Smart nano-bio-devices



Samuel Sánchez Ordóñez | Group Leader / ICREA Research Professor
Nerea Murillo Cremaes | Postdoctoral Researcher
Tania Patiño Padial | Postdoctoral Researcher
Agostino Romeo | Postdoctoral Researcher
Diana Vilela Garcia | Postdoctoral Researcher
Katherine Villa Gómez | Postdoctoral Researcher
Jaideep Katuri | PhD Student
Ana Candida Lopes Hortelão | PhD Student
Rafael Mestre Castillo | PhD Student
Lucas Santiago Palacios Ruiz | PhD Student
Jemish Parmar | PhD Student
Angel Blanco Blanes | Laboratory Technician
Ariadna Pérez Jiménez | Laboratory Technician
Xavier Arqué Roca | Masters Student
Tania Gonçalves Ferreira | Masters Student
Albert Miguel López | Masters Student
Silvia Vicente Rizo | Masters Student

About

Chemically powered micro- and nanomotors are small devices that are self-propelled by catalytic reactions in fluids. These synthetic systems form a relatively new class of active matter, natural examples of which include flocks of birds, collection of cells and suspensions of bacteria. A number of promising applications have been envisioned for these micro-nano motors, such as targeted drug delivery, environmental remediation and as pick-up and delivery agents in lab-on-a-chip devices. These applications rely on the basic functionalities of self-propelled motors: directional motion, sensing of the local environment, and the ability to respond to external signals. Our group works on the design and study of new types of synthetic motors towards these applications and develops proof-of-concept studies to demonstrate their viability. Below are some of the projects that we are currently working on.


Enzyme powered motors towards biomedical applications

enzymes

Several enzymes can be coupled with synthetic nanomotor architectures to derive a bio-compatible propulsion mechanism.

Conventional micro-nano motors have been powered by the catalytic decomposition of hydrogen peroxide on a Pt surface. This method falls short when it comes to bio-medical applications due to the toxicity of peroxide. To move toward more biocompatible propulsion sources, there has been a recent effort to integrate enzymes in the nanomotors. Enzymes trigger biocatalytic reactions, which can convert chemical energy into kinetic motion for bioprocesses, for example, intracellular protein transport. Different types of enzymes including urea and D-glucose have been coupled with the nanomotor structures to achieve a non-toxic propulsion mechanism. We have also developed method to achieve direction and velocity control in these types of motors.

Read more:
Enzyme-Powered Hollow Mesoporous Janus Nanomotors
Xing Ma, Anita Jannasch, Urban-Raphael Albrecht, Kersten Hahn, Albert Miguel-López, Erik Schäffer, and Samuel Sánchez
Nano Letters 2015 15, 7043-7050
Bubble-Free Propulsion of Ultrasmall Tubular Nanojets Powered by Biocatalytic Reactions
Xing Ma, Ana C. Hortelao, Albert Miguel-López, and Samuel Sánchez
Journal of the American Chemical Society 2016 138, 13782-13785
Enzyme Catalysis To Power Micro/Nanomachines
Xing Ma, Ana C. Hortelão, Tania Patiño, and Samuel Sánchez
ACS Nano 2016 10, 9111-9122


Active matter near interfaces

interfaces

Phoretic and hydrodynamic interactions with nearby surfaces can be exploited to create a guidance mechanism for self-propelled particles and to self-assemble micro-gears.

We study colloidal suspensions of Pt-coated silica particles as a model system of synthetic active matter. These systems have mostly been studied in homogeneous environments until now. Our interest lies in observing these systems in more complex settings, such as near interfaces. Since the self-propelled particles generate chemical and hydrodynamic fields around them, they interact in complex ways with nearby surfaces that often leads to interesting behaviour. We could find, for instance that close to solid surfaces they achieve a stable ‘gliding’ state which could be exploited to develop a system for guiding micro-nano motors using topographical features.  The same effect could also be used to self-assemble micro-motors around passive structures to form micro-gears.

Read more:
Topographical Pathways Guide Chemical Microswimmers
Juliane Simmchen, Jaideep Katuri, William E. Uspal, Mihail N. Popescu, Mykola Tasinkevych, and Samuel Sánchez
Nature Communications 2016 7 , 10598
Self-Assembly of Micromachining Systems Powered by Janus Micromotors
Claudio Maggi, Juliane Simmchen, Filippo Saglimbeni, Jaideep Katuri, Michele Dipalo, Francesco De Angelis, Samuel Sanchez, and Roberto Di Leonardo
Small 2016 12, 446–451


 Environmental applications of micro-nano motors

environmental

Fe and Gox based micromotors can be used to remove organic and heavy metal contaminants from water.

Artificial microjets, based on microtubular geometries self-propel by the ejection of a jet of bubbles. Recent studies have demonstrated that the bubbles released from the microjets can mix solutions and enhance chemical reactions. We have designed ‘roll-up’ microjets that use up hydrogen peroxide as a fuel and generate and actively transport free radicals in the solution in a 3D manner, boosting the degradation of organic dyes via Fenton-like reactions. Long-term activity lasting upto 24 hrs has been recorded for these systems. Electrodeposited microjets that are much smaller than their ‘roll-up’ counterparts, containing graphene-oxide on the outside have been developed as ‘heavy metal scrubbers’. Lead is captured by these graphene-modified microjets and cleaned out from contaminated solutions. The metal can thereafter be desorbed, and the microjets can be reused again.

Read more:
Self-Propelled Micromotors for Cleaning Polluted Water
Lluís Soler, Veronika Magdanz, Vladimir M. Fomin, Samuel Sanchez, and Oliver G. Schmidt
ACS Nano 2013 7, 9611-9620
Reusable and Long-Lasting Active Microcleaners for Heterogeneous Water Remediation
Jemish Parmar, Diana Vilela, Eva Pellicer, Daniel Esqué-de los Ojos, Jordi Sort, and Samuel Sánchez
Advanced Functional Materials 2016 26, 4152–4161
Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water
Diana Vilela, Jemish Parmar, Yongfei Zeng, Yanli Zhao, and Samuel Sánchez
Nano Letters 2016 16, 2860-2866


Bio-hybrid micro-nano motors

biohybrid

Bacteria can be selectively adhered to metal caps of ‘Janus’ colloids to create multi-flagellated bio hybrid systems.

Bio-hybrid motors focus on the interaction of a motile cell with artificial materials to create a mobile system that is powered by cellular actuation. Bio-hybrids are not powered by toxic chemical fuels but by biological fluids, making them ideal for biomedical applications. They are responsive to their local environment (pH, temperature, and chemical gradients) and are capable of performing complex tasks that synthetic-only motors would not be capable of. We have coupled E. coli bacteria with metal capped ‘Janus’ colloids to create a multi-flagellated bio-hybrid system. E. coli adheres selectively to the metal cap of the Janus particle and the polystyrene side of the Janus particle can be used for localized drug attachment.

Read more:
Biohybrid Janus Motors Driven by Escherichia Coli
Morgan M. Stanton, Juliane Simmchen, Xing Ma, Albert Miguel-López, and Samuel Sánchez
Advanced Materials Interfaces 2016 3, 1500505


Flexible sensors and soft robotics

Soft materials and architectures that conform to and create an intimate matching with soft and non-planar body surfaces offer intriguing opportunities in biomedicine. A recent line of research in our group is to investigates soft and flexible systems oriented towards hydrid bio-robotics and wearable electronics for biosensing. On the one hand, we are interested in the fabrication of soft hybrid bio-bots based on 2D bio-fabrication and 3D bio-printing techniques. Here, artificial components (hydrogels, polymers, nanoparticles etc.) and biological cells are integrated to produce different types of controlled actuation, paving the way for complex hybrid systems. On the other hand, we develop flexible biosensors for non-invasive, cost-effective and personalized monitoring of bio-analytes in biological fluids. Such devices could play a key role in reducing the costs associated with clinical and biomedical diagnostic procedures. We focus on sensors based on electrochemical and colorimetric detection, as they are particularly suited for low-cost, portable and user-friendly medical diagnostics.

Read more:
Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications
Tania Patino, Rafael Mestre, Samuel Sánchez
Lab Chip, 2016 1619, 3626-3630
Smart biosensors for multiplexed and fully integrated point-of-care diagnostics
Agostino Romeo, Tammy Sue Leung, and Samuel Sánchez
Lab Chip, 2016 16, 1957-1961
Flexible sensors for biomedical technology
Diana Vilela, Agostino Romeo, and Samuel Sánchez
Lab Chip, 2016 16, 402-408

Projects

Publications

Equipment

Collaborations

News

Highlights

Jobs

Comments are closed